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Abstract

There are two regular polygons Pn(R1) and Pn(R2) which corre-
spond to the given polygonal distances – d1, d2, . . . , dn. It is proved
that the radii R1, R2 of the circumcircles of the regular polygons and
the n distances are connected by the system:

n∑
i=1

d2mi = n

[
(R2

1 +R2
2)

m+

⌊m
2 ⌋∑

k=1

(
m

2k

)(
2k

k

)
(R1R2)

2k((R2
1 +R2

2)
m−2k

]
,

where m = 1, . . . , n − 1. The solutions for the equilateral triangles
and the squares are investigated. The two-parametric families of the
solutions are given in both cases, when three distances are rational
numbers.
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1 Introduction

The distances d1, d2, . . . , dn from a point M to the vertices of a regular
n-sided polygon Pn(R) satisfy the following system of equations:

n∑
i=1

d2mi = n

[
(R2 + L2)m +

⌊m
2
⌋∑

k=1

(
m

2k

)(
2k

k

)
(RL)2k(R2 + L2)m−2k

]
, (1.1)

where m = 1, . . . , n − 1; R is the radius of the circumcircle and L is the
distance between M and the centroid of the regular polygon [2, 3].

In [4,5], it is proved that there exist two regular polygons Pn(R1), Pn(R2)
having the same polygon distances – d1, d2, . . . , dn from the point M . Geo-
metrical aspects are investigated, the position of M is defined and general
method of constructing the second polygon is given. In the present article
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algebraic aspects of this problem is investigated. The systems which con-
nects the regular polygonal distances and the sizes of both regular polygons
are given. The solutions of these systems are investigated for the equilateral
triangles and the squares.

2 General Theorems

The cyclic averages are defined as sums of the like even powers of the polyg-
onal distances [2, 3]:

S(2)
n =

1

n

n∑
i=1

d2i , . . . , S
(2m)
n =

1

n

n∑
i=1

d2mi .

The main property of the cyclic averages – they can be expressed only
in terms of R and L (1.1). The first two equations of (1.1):

S(2)
n = R2 + L2, (2.1)

S(4)
n = R4 + L4 + 4R2L2. (2.2)

Eliminate R and L in (1.1), we get the conditions, which must be satisfied
by the distance d1, d2, . . . , dn it they serve as the regular polygonal distances:

Theorem 2.1. If d1, d2, . . . , dn satisfy

S(2m)
n = (S(2)

n )m +

⌊m
2
⌋∑

k=1

1

2k

(
m

2k

)(
2k

k

)(
S(4)
n − (S(2)

n )2
)k
(S(2)

n )m−2k, (2.3)

where m = 3, . . . , n−1; they are the polygonal distances for a regular n-gon.

For the equilateral triangle, there is no condition (2.3), because for P3

exist S
(2)
3 and S

(4)
3 only. This is naturally – according to the Pompeiu the-

orem there is no condition for the polygonal distances – d1, d2, d3, however
beginning from the square such conditions exist for all regular polygons. For
example, for the square holds:

S(6)
n = S(2)

n

(
3S(4)

n − 2(S(2)
n )2

)
,

which turns into:
d21 + d23 = d22 + d24. (2.4)

If we initially assumed, that d1, d2, . . . , dn are the polygonal distances for
some regular polygons Pn(R1) and Pn(R2), then from (2.1) and (2.2) follow:

R1 = L2 and R2 = L1;
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and

S(2)
n = R2

1 +R2
2,

S(4)
n = R4

1 +R4
2 + 4R2

1R
2
2;

solving of which gives the sizes for both polygons:

Theorem 2.2. If d1, d2, . . . , dn are the polygonal distances of the regular
polygon Pn(R1), there exists the second regular polygon Pn(R2) having the
same polygonal distances and the radii of the circumcircles of the polygons
are solutions of the equation:

2R4 − 2R2S(2)
n +

(
S(4)
n − (S(2)

n )2
)
= 0.

Corollary 2.1. For the regular polygons with the same polygonal distances:

R2
1 =

1

2

(
S(2)
n +

√
3(S

(2)
n )2 − 2S

(4)
n

)
,

R2
2 =

1

2

(
S(2)
n −

√
3(S

(2)
n )2 − 2S

(4)
n

)
.

We can conclude – Theorem 2.1 finds out the relations among regular
polygonal distances, while Theorem 2.2 establishes the sizes of the regular
polygons. They are equivalent to

Theorem 2.3. For two regular polygons Pn(R1), Pn(R2) with the same
polygonal distances d1, d2, . . . , dn is satisfied:

n∑
i=1

d2mi = n

[
(R2

1 +R2
2)

m +

⌊m
2
⌋∑

k=1

(
m

2k

)(
2k

k

)
(R1R2)

2k(R2
1 +R2

2)
m−2k

]
,

where m = 1, . . . , n− 1.

3 Special Cases

Equilateral Triangles

If the equilateral triangles P3(R1), P3(R2) of the sides a1, a2 have the same
polygonal distances – d1, d2, d3, then from Theorem 2.3 follows:

d21 + d22 + d23 = a21 + a22,

d41 + d42 + d43 =
1

3
(a41 + a42 + 4a21a

2
2).

(∗)
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Denote by the symbol – ∆(d1,d2,d3) the area of a triangle whose sides have
lengths d1, d2, d3, i.e., the Pompeiu triangle. Then,

3(S
(2)
3 )2 − 2S

(4)
3 =

1

3

(
(d21 + d22 + d23)

2 − 2(d41 + d42 + d43)
)

=
16

3
∆2

(d1,d2,d3)
.

For the sides:

a21 =
1

2

(
d21 + d22 + d23 + 4

√
3∆(d1,d2,d3)

)
, (3.1)

a22 =
1

2

(
d21 + d22 + d23 − 4

√
3∆(d1,d2,d3)

)
. (3.2)

Squares

For the squares of the sides a1, a2 and the same polygonal distances – d1,
d2, d3, d4 from Theorem 2.3 follows:

d21 + d22 + d23 + d24 = 2(a21 + a22),

d41 + d42 + d43 + d44 = a41 + a42 + 4a21a
2
2,

d61 + d62 + d63 + d64 =
1

2
(a21 + a22)(a

4
1 + a42 + 8a21a

2
2).

(∗∗)

From the Theorem 2.1:

8(d61 + d62 + d63 + d64) + (d21 + d22 + d23 + d24)
3

= 6(d21 + d22 + d23 + d24)(d
4
1 + d42 + d43 + d44),

which is equivalent to

3(d31 + d32 − d33 − d34)(d
2
1 + d23 − d22 − d24)(d

2
1 + d24 − d22 − d23) = 0.

Enumerate the vertices of the square – A1A2A3A4. Then only (2.4) holds.
For P4:

3(S
(2)
4 )2 − 2S

(2)
4 =

1

16

[
3(d21 + d22 + d23 + d24)

2 − 8(d41 + d42 + d43 + d44)
]

= 4∆2
(d1,

√
2 d2,d3)

= 4∆2
(d2,

√
2 d3,d4)

,

so

d21 + d23 = d22 + d24 = a21 + a22, (3.3)

a21 =
1

2
(d21 + d23) + 2∆(d1,

√
2 d2,d3)

=
1

2
(d22 + d24) + 2∆(d2,

√
2 d3,d4)

, (3.4)

a22 =
1

2
(d21 + d23)− 2∆(d1,

√
2 d2,d3)

=
1

2
(d22 + d24)− 2∆(d2,

√
2 d3,d4)

. (3.5)
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4 Solutions for Equilateral Triangles

Rewrite the system (∗) in equivalent form:

(d21 + d22 + d23 + a21,2)
2 = 3(d41 + d42 + d43 + a41,2), (4.1)

a22 = d21 + d22 + d23 − a21. (4.2)

The equation (4.1) is completely symmetrical, so it is possible to change:

d1 oo // d2 oo // d3 oo // a1 and a1 oo // a2 ,

whereas the equation (4.2) gives the rule – how to construct new solutions
from given one.

Theorem 4.1. If (d1, d2, d3, a1, a2) is the solution of (4.1), (4.2), the fol-
lowings are the solutions too:(

a1, d1, d2, d3,
√

a21 + d21 + d22 − d23

)
,
(
d3, a1, d1, d2,

√
d23 + a21 + d21 − d22

)
,(

d2, d3, a1, d1,
√
d22 + d23 + a21 − d21

)
;(

a2, d1, d2, d3,
√
a21 + d21 + d22 − d23

)
,
(
d3, a2, d1, d2,

√
d23 + a22 + d21 − d22

)
,(

d2, d3, a2, d1,
√
d22 + d23 + a22 − d21

)
.

If we perform there construction for “new” solutions again we get the
chain of the solutions of the (4.1), (4.2).

Let us call solution for only one triangle (for example with side – a1)
trivial, in which M is on the circumcircle of this triangle or on a line deter-
mined by a side of the triangle. If M lies on the circumcircle of the triangle
of the side – a1, by Theorem 2.1 from [5], follows:

a1 = a2.

By Van Schooten theorem d3 = d1+d2, and rational parametrization of the
equation:

d21 + d22 + d1d2 = a21,

gives the solution of (4.1), (4.2):(
t2 − 1, 1 + 2t, t2 + 2t, t2 + t+ 1, t2 + t+ 1

)
. (4.3)

where t ∈ Q.
If M lies on the line determined by the side a1 of the first triangle, for

the second triangle with side a2, this case is not trivial and the solutions of
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(4.1), (4.2) are:(
t2 + t+ 1, t2 − 1, 1 + 2t, t2 + 2t,

√
t4 − 2t3 + t2 + 6t+ 3

)
,(

t2 + 2t, t2 + t+ 1, t2 − 1, 1 + 2t,
√
3t4 + 6t3 + t2 − 2t+ 1

)
,(

1 + 2t, t2 + 2t, t2 + t+ 1, t2 − 1,
√
t4 + 6t3 + 13t2 + 6t+ 1

)
.

(4.4)

For example, for t = 2, from (4.3) solution is

(3, 5, 8, 7, 7),

and Theorem 4.1 gives new solutions:(
7, 3, 5, 8,

√
19

)
,
(
8, 7, 3, 5,

√
97

)
,
(
5, 8, 7, 3,

√
129

)
.

By using the Theorem 4.1 again, for “new” solutions, we get:(√
19 , 7, 3, 5,

√
52

)
,
(
5,
√
19 , 7, 3,

√
84

)
,
(
3, 5,

√
19 , 7, 2

)
;(√

97 , 8, 7, 3,
√
201

)
,
(
3,
√
97 , 8, 7, 11

)
,
(
7, 3,

√
97 , 8,

√
91

)
;(√

129 , 5, 8, 7, 13
)
,
(
7,
√
129 , 5, 8,

√
139

)
,
(
8, 7,

√
129 , 5,

√
217

)
.

Parametrization

In general case, if
∆(d1,d2,d3) ̸= 0

and
d1, d2, d3, a

2
1, a

2
2 ∈ Q,

from (3.1) and (3.2) follow – the area of the Pompeiu triangle must be
rational multiple of

√
3 , so the height of the side (for example d2) is rational

multiple of
√
3 too. To devide each side by this rational multiple we get

rational triangle which is similar to origin one (see Fig. 1).

Figure 1.
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The parts v and y are rationals too. The rational parametrization of the
equation

x2 − 3 = y2

is given by formulae:

x =
2(ξ2 − ξ + 1)

ξ2 − 1
, y =

ξ2 − 4ξ + 1

ξ2 − 1
;

so complete rational parametrization of the rational-sided triangles with area
rational multiple of

√
3 is given:

2(ξ2 − ξ + 1)

ξ2 − 1
· h, 2(ζ2 − ζ + 1)

ζ2 − 1
· h,(ξ2 − 4ξ + 1

ξ2 − 1
+

ζ2 − 4ζ + 1

ζ2 − 1

)
· h,

where ξ, ζ, h ∈ Q. The area equals:
√
3

2

(ξ2 − 4ξ + 1

ξ2 − 1
+

ζ2 − 4ζ + 1

ζ2 − 1

)
· h2.

After removing the denominators and the common factor, we obtain:

Theorem 4.2. Complete parametrization of the system (∗), when

d1, d2, d3, a
2
1, a

2
2 ∈ Q

is given by formulae:

d1 = 2(ξ2 − ξ + 1)(ζ2 − 1),

d3 = 2(ζ2 − ζ + 1)(ξ2 − 1),

d2 = (ξ2 − 4ξ + 1)(ζ2 − 1) + (ζ2 − 4ζ + 1)(ξ2 − 1);

∆(d1,d2,d3) =

√
3

2
(ξ2 − 1)(ζ2 − 1) d2,

a21,2 =
1

2

(
d21 + d22 + d23 ± 4

√
3∆(d1,d2,d3)

)
.

For
ζ = −ξ,

is obtained the following one-parametric family of the solution of system (∗).

Corollary 4.1. The solution of the system (∗) is:

d1 = ξ2 − ξ + 1,

d3 = ξ2 + ξ + 1,

d2 = ξ2 + 1,

a21 = ξ2(3ξ2 + 4),

a22 = 4ξ2 + 3.
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For rationality of a2 substitute

ξ =
1

2

t2 − 4t+ 1

t2 − 1
,

then

a2 =
2(t2 − t+ 1)

t2 − 1
,

and we get well-known A. Kemnitz parametrization [1].
The condition of rationality for a1:

ξ =
4t

3t2 − 1
,

after changing t → 1
t , gives new solutions of (∗):

d1 = t4 + 4t3 + 10t2 − 12t+ 9,

d2 = t4 − 4t3 + 10t2 + 12t+ 9,

d3 = t4 + 10t2 + 9,

a1 = 8t(t2 + 3),

a22 = 3t4 + 46t2 + 27.

The smallest nontrivial integer solution of (4.1) is given, for t = 2:

d1 = 73, d2 = 57, d3 = 65, a1 = 112.

The corresponding solutions for the system (∗) are:(
73, 57, 65, 112,

√
259

)
,(

112, 73, 57, 65,
√
16897

)
,(

65, 112, 73, 57,
√
18849

)
,(

57, 65, 112, 73,
√
14689

)
.

5 Solutions for Squares

The system (∗∗) is equivalent to:

(d21 + d22 + d23 + d24 + 2a21,2)
2 = 4(d41 + d42 + d43 + d44 + 3a41,2), (5.1)

d21 + d23 = d22 + d24, (5.2)

a22 = d21 + d23 − a21. (5.3)

Equations (5.1), (5.2) are equivalent to the four-distance problem. The four-
distance problem is a long-open problem which asks whether there is a point
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in the plane at rational polygonal distances from the vertices of the square
with rational side. It is believed that no such point exists. Equation (5.1)
is equivalent to the three-distance problem: finding rational distances d1,
d2, d3 to the vertices of the square with rational side. For some time, it
was belived there does not exist a solution to the three-distance problem
that is not on a side of the square (trivial case). However, a one-parameter
family of solutions was found by J. H. Hunter. The three and four distance
problems are reviewed in §D19 of [1].

We seek the solutions of the equations (5.1)–(5.3) when three distances
– d1, d2, d3 are rationals and d24, a

2
1, a

2
2 are rationals too.

From the symmetry, it is possible to change:

d1 oo // d3 , d2 oo // d4 and a1 oo // a2 .

From the equations (5.1)–(5.3):

Theorem 5.1. If (d1, d2, d3, d4, a1, a2) is the solution of the system (5.1)–
(5.3), the followings are the solutions too:

(d1, a1, d3, a2, d2, d4) and (a1, d2, a2, d4, d1, d3).

Unfortunately for the squares, it is impossible to construct the chain of
the solutions.

In trivial case, when the pointM lies on the side of one square by rational
parametrization of the Pythagorean equation is obtained:

d1 = 1 + t2, d2 = 1− t2, d3 = t2 + 2t− 1, a1 = 2t;

d24 = t4 + 4t3 + 6t2 − 4t+ 1, a22 = 2(t4 + 2t3 − 2t+ 1).

In general case from (3.4) and (3.5) follows – the area of the triangle with
length of sides – d1,

√
2 d2, d3 must be rational number, so the height of the

side –
√
2 d2 is rational multiple of

√
2 . To divide each side by this rational

multiple we get rational triangle which is similar to origin one (see Fig. 2).

Figure 2.

The values of v and y are rationals too. The rational parametrization of
the equation:

x2 − 2 = 2y2,
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is given by formulae:

x =
2ξ2 − 4ξ + 4

ξ2 − 2
, y =

ξ2 − 4ξ + 2

ξ2 − 2
,

so complete parametrization of the triangle with sides d1,
√
2 d2, d3 and

rational area is given:

2ξ2 − 4ξ + 4

ξ2 − 2
· h, 2ζ2 − 4ζ + 4

ζ2 − 2
· h,

√
2
(ξ2 − 4ξ + 2

ξ2 − 2
+

ζ2 − 4ζ + 2

ζ2 − 2

)
· h,

where ξ, ζ, h ∈ Q. The area equals:(ξ2 − 4ξ + 2

ξ2 − 2
+

ζ2 − 4ζ + 2

ζ2 − 2

)
· h2.

We obtain:

Theorem 5.2. Complete parametrization of the system (∗∗), when

d1, d2, d3, d
2
4, a

2
1, a

2
2 ∈ Q

is given by formulae

d1 = 2(ξ2 − 2ξ + 2)(ζ2 − 2),

d3 = 2(ζ2 − 2ζ + 2)(ξ2 − 2),

d2 = (ξ2 − 4ξ + 2)(ζ2 − 2) + (ζ2 − 4ζ + 2)(ξ2 − 2),

d24 = d21 + d23 − d22;

∆(d1,
√
2 d2,d3)

= (ξ2 − 2)(ζ2 − 2)d2,

a21,2 =
1

2
(d21 + d23)± 2∆(d1,

√
2 d2,d3)

.

Again, for
ζ = −ξ,

we get the one-parametric family of the solution.

Corollary 5.1. The solution of the system (∗∗) is:

d1 = ξ2 − 2ξ + 2,

d3 = ξ2 + 2ξ + 2,

d2 = ξ2 + 2,

d24 = ξ4 + 12ξ2 + 4,

a21 = 2ξ2(ξ2 + 4),

a22 = 8(ξ2 + 1).
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For rationality of a1 substitute:

ξ =
2(2t2 − 4t+ 1)

2t2 − 1
,

then

a1 =
8(2t2 − 4t+ 1)(2t2 − 2t+ 1)

(2t2 − 1)2
.

Changing t → 1
1−t , we get well-known J. H. Hunter solution [1].

The condition of rationality of a2 is:

ξ =
2t2 − 4t+ 1

2t2 − 1
,

a2 =
4(2t2 − 2t+ 1)

2t2 − 1
.

Changing t → 1
t , gives new parametrization for three-distance problem:

d1 = 5t4 − 16t3 + 12t2 + 4,

d3 = t4 + 12t2 − 32t+ 20,

d2 = 3t4 − 8t3 + 12t2 − 16t+ 12,

a2 = 4(t2 − 2t+ 2)(t2 − 2).

For t = 1
2 , there is a point at distances 85, 99 and 113 from three

consecutive vertices of a square of side 140. This solution is given in [1].
For t = 3

2 , we get the smaller nontrivial integer solution of three-distance
problem:

d1 = 37, d2 = 51, d3 = 65, a2 = 20.

The corresponding solutions of (∗∗) are:(
37, 51, 65,

√
2993 , 20,

√
5194

)
,
(
37, 20, 65,

√
5194 , 51,

√
2993

)
,(

20, 51,
√
5194 ,

√
2993 , 37, 65

)
.
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